MICB 405 Bioinformatics Lecture 5.1 Multiple Sequence Alignments

FSC 1221

September 30th, 2008

Objectives

By the end of today's lecture:

- You will be able to compare and contrast pairwise vs. multiple sequence alignments.
- You will be able to describe the method of progressive multiple sequence alignments.
- You will be able to explain how the CLUSTAL algorithm works.
- You will list examples of uses and applications of multiple sequence alignments.

	😣 👄 🕀 Clustal 2.0.9	globin.aln 9 multiple sequence alignment
Examples		VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLST VLSEEKAAVLALWDKVNEEEVGGEALGRLLVVYPWTQRFFDSFGDLSN VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLGFPTTKTYFPHF-DLS- PIVDTGSVAPLSAAEKTNIRSAWAPVYSTYETSGVDILVKFFTSTPAAQEFFPKFKGLTT VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKT GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFSFLKGTSE *: : : * . : * : : * : * : * :
		PDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRL PGAVMGNPKVKAHGKKVLHSFGEGVHHLDNLKGTFAALSELHCDKLHVDPENFRL HGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKL ADQLKKSAQVKAHGKKVGDALTLAVGHLDDLPGALSNLSDLHAHKLRVDPVNFKL ADQLKKSADVRWHAERIINAVNDAVASMDDTEKMSMKLRDLSGKHAKSFQVDPQYFKV EAEMKASEDLKKHGVTVLTALGAILKKKGHHEAELKPLAQSHATKHKIPIKYLEF VPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-VADAHFPV :: *. :
Mode: Multiple Alignment Mode 🗣 Font: 10 📢	HBB_HUMAN HBB_HORSE HBA_HUMAN HBA_HORSE GLB5_PETMA MYG_PHYCA LGB2_LUPLU	LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR LSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSKYR LAAVIADTVAAGDAGFEKLMSMICILLRSAY ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA : : .:
HBB_HUMAN		• : : : : : : : : : : : : : : : : : : :

 1
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100
 110
 1

والمتناطين المتحاطية المتناط متناد وليتنبغ

Multiple Sequence Alignment

VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGTSSNIGS--ITVNWYQQLPG LRLSCSSSGFIFSS--YAMYWVRQAPG LSLTCTVSGTSFDD--YYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPGA--VTVAWKADS--SALGCLVKDYFPEP--VTVSWNSG---VSLTCLVKGFYPSD--IAVEWESNG--

The sole purpose of multiple sequence alignments is to place homologous positions of homologous sequences into the same column.

5

Pairwise vs. MSA

<u>Pairwise</u>

- Can use dynamic programming method
 - very fast to find optimal alignment
- Given scoring matrix and gap penalties
 - exact solution to optimal alignment is possible to compute

- Optimize alignment of every sequence with every other sequence
 - Slow
- Use heuristics
 - example progressive alignment heuristic
- Approximate solution
 - biologically significant

Clustal

- Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994)
 - CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice.
 - Nucleic Acids Research, 22:4673-4680.

What is a Progressive Alignment?

Build up multiple sequence alignment by iteratively adding new sequences to an existing alignment.

- Example simple progressive alignment with random sequence selection
 - Starting with N sequences to align:
 - I. Create initial pairwise seed alignment
 - 2. Randomly select next sequence to align
 - 3. Align sequence to existing alignment
 - 4. Return to step 2 until all N sequences are aligned

Limitations

- Crucial that early sequence alignments are correct
 - Every new sequence aligned can introduce errors; worsens with sequence divergence
- Order that sequences are aligned may alter final alignment
 - Random selection may not be best
- Alignments can often be improved by hand

CLUSTAL - an improved progressive method

 \checkmark Incorporate biological information

- Assume sequences are homologous
- Align most similar sequences first
 - avoid introduction of unnecessary gaps
 - use existing alignment information
- Position Specific Gap Penalties

CLUSTAL Algorithm Steps

- I. Pairwise alignment of each sequence pair
 - Number of comparisons depends on how many sequences
- 2. Compute distance matrix
 - Percent non-identity between each alignment pair
 - Lower distance means more similar
- 3. Construct a sequence similarity tree
 - Cluster sequences according to distance (similarity)
- 4. Progressive alignment of sequences according to a tree

How does the Clustal algorithm actually work?

(A) Pairwise Alignment

Steps in a Multiple Sequence Alignment continued ...

(B) Multiple alignment following the tree from A

Gap Penalities

- Gaps are introduced as alignment progresses
 - Gaps in new sequences to be aligned
 - Gaps in existing multiple alignments
- Insertions and deletions (indels) are rare events
 - Want indels to be aligned
 - Indels usually occur in loop structures of proteins
- There are two type of gap opening penalities: gap opening and gap extension
 - Determined empirically by user

Position Specific Gap Penalities

- Decrease penalties where gaps already occurs
- Increase penalties in adjacent positions to where gap already occurs
 - Encourage extension of gaps in loop regions vs. introduction of new gaps
- Increase or decrease gap penalties according to amino acid type
 - Increase penalties in stretches of hydrophobic residues
 - Discourage the disruption of secondary structure elements

Gap Penalties Example

Figure from Higgens et al, Methods in Enzymology 266: 383

The order of your input sequences affects your resulting multiple sequence alignment

Let's try and illustrate this with an example.....

- BC and BD are both equally similar
- However the BC and BD consensus sequences can be quite different:

B= ELVIS	BC= ELVIS	BD= ELVIS
C= LIVES	LIVES	EVILS
D= EVILS	<u>V-S</u>	<u>ES</u>

Sequence Order

The order of your input sequences could affect your resulting multiple sequence alignment

- ✓ What should you do?
 - Try aligning your sequences with different input orders to see if there is any significant difference in the alignments.
 - Always examine your alignment

Applications of MSA

Differences between CLUSTAL and BLAST?

<u>CLUSTAL</u>

- global alignment method
 - Align complete sequence
- Assumes homology
- Complex gap penalties
- Slower
- Align protein-protein or nucleotide-nucleotide only

<u>BLAST</u>

- local alignment method
 - Search for HSP
- Test for homology
- Simple gap penalties
- Fast
- Translated searches

Standard Multiple Sequence Alignment Approach

- Be as sure as possible that the sequences included are homologous
- Know as much as possible about the gene/ protein in question before trying to create an alignment (secondary structure, domains etc..)
- Start with an automated alignment: preferably one that utilizes some evolutionary theory such as CLUSTAL

Standard Multiple Sequence Alignment Approach

Examine alignment:

- Are you confident that aligned residues/bases evolved from a common ancestor?
- Are domains of the proteins/predicted secondary structures, etc. aligning correctly?
- Are most indels outside of known motifs or secondary structure?

 \rightarrow No? May need to edit sequences and redo...

The Take Home Message

Why perform an MSA?

- Visualize trends between homologous sequences
 - Shared regions of homology
 - Regions unique to a sequence within a family
 - Consensus sequence
- As the first step in a phylogenetic analysis

The Take Home Message

How does one perform an MSA?

- By hand: too hard!
- Automated alignment: Fast, but doesn't necessarily produce the "correct" alignment

Best approach = Automated alignment with manual editing

Summary

- Uses of Multiple Sequence Alignments (MSA)
- Pairwise vs. MSA
- CLUSTAL = progressive alignment method
- CLUSTAL method involves use of:
 - distance matrix
 - guide tree
 - optimized gap penalties

Links

- CLUSTALW @ EBI
 - <u>http://www.ebi.ac.uk/clustalw/</u>
- Download CLUSTALX
 - <u>ftp://ftp.ebi.ac.uk/pub/software/clustalw2/</u>

For more information:

- Baxevanis & Ouellette (3rd Edition)

- Chapter 12: p326 p331
- Westhead, Parish & Twyman
 - Sections FI