
Building a computer out of living cells may sound
like science fiction, but the foundations of such a
technology are already being laid down.  In the last
25 years we have seen astounding developments in
microelectronics and computation, but even the most
modern computers still have their weaknesses. First
of all, current computer technology is fast approaching
the limits of its capabilities, so there is considerable
interest in finding newer, better technologies. Also, with
current computers, a single fault in one circuit or a
single line error in a program can cause the entire
computer system to fail because these models rely
heavily on the perfection of their parts and
programming to function.

In contrast, biological systems demonstrate
remarkable robustness. For example, simple and
potentially faulty cells cooperate to form incredibly
complex structures during embryological development,
which are subsequently well maintained. For computer
engineers, there are clearly important lessons to be
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learned from the natural world. The last 25 years have
also seen remarkable advances in our understanding
of molecular biology. Recombinant DNA technology
is a powerful tool that already has a wide range of
applications from therapeutics to agriculture. Armed
with this new tool, engineers are now trying to create
new computer technology that consists of living cells.

The Theory of In Vivo Digital Circuits

A brief summary of the principles underlying
conventional computing and gene regulation is given
in the following articles. This section describes how
gene regulation can be used to make logic gates.

A simple theoretical example described by Weiss
et al.1 is a biochemical inverter (a NOT gate), as shown
in Figure 1. When a repressor protein binds to an
operator of the gene’s promoter, RNA polymerase is
prevented from transcribing the gene. Therefore, when
the concentration of the repressor is high, the
concentration of the gene product is low, and vice

Figure 1.  A repressor protein acting as a NOT gate.
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versa. Applying Boolean logic to the system, where
high protein concentrations represent ‘1’ and low
concentrations represent ‘0’, it can be seen that the
above system is behaving like an inverter. Note that it
is the concentration of protein that determines the
signal.

Taking the theory a step further, these biochemical
inverters can be linked together to make other gates1.
If there are two biochemical inverters with different
input repressor proteins A and B but the same output
protein, C, the concentration of C will always be high
unless A and B are both high. This is a NAND gate
(Figure 2). Now suppose that C is itself the repressor
of another gene that encodes protein D. When C is
high, D will be low and vice versa. In other words,
the output of the NAND gate is being fed into yet
another inverter. This inverter inverts the outputs of
the NAND gate, giving an AND gate. Notice that, in
this example, the inverters are being interconnected
to perform more advanced functions, and that proteins
are responsible for these interconnections In other
words, the proteins are acting as wires.

Figure 3 gives the example of an IMPLIES gate 2.
In this example, the input proteins are the inducer and
repressor of a gene’s promoter. Without the inducer,
the system behaves like an inverter. However, when
the inducer is present, it binds to the repressor and
alters its conformation so that it can no longer bind to
the operator, thereby allowing transcription to continue

uninterrupted. The output is high unless the repressor
is high and the inducer is low. The IMPLIES gate is
believed to be used by cells as a sensor of
environmental conditions and a receiver of messages
from remote sources2.

There are naturally occurring AND gates in cells
which are used to detect messages from neighbouring
cells 3. In this system, the input proteins are the
activator and inducer proteins of a gene. Only a
complex of the two proteins can bind the operator
and allow transcription of the gene to proceed. Thus
the output is high only when both inputs are high, giving
an AND gate.

The First In Vivo Circuits
A fundamental problem with biochemical processes

is that there is considerable cell-cell variation in
behavior. For an in vivo digital circuit to function,
fluctuations in the concentrations of proteins that are
involved must be controlled. In 1974, Savigau
suggested that gene autoregulation by means of
negative feedback loops is a natural mechanism by
which the cell exerts such control 4. Becskei and
Serrano used this idea to construct a simple prototype
circuit called an auto repressor5.

In this study, a tetracycline repressor gene (tetR)
was fused with the Enhanced Green Fluorescent
Protein (EGFP) gene to give tetR-EGFP so that
fluorescence could be used to reflect the degree of
gene expression. In the natural system, the tetR protein

Figure 2.  Repressor proteins acting as a NAND gate.
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product binds to an operator of the tetR promoter to
inhibit further transcription of the gene. Two groups
of Escherichia coli cells were transformed with
plasmids containing different DNA inserts. In the first
group, the insert contained tetRY24A-EGFP, in which
the tetR had been mutated to code for a non-
functioning protein product that does not bind the
operator. The second contained wild-type tetR-
EGFP. In the first group, there was wide variation in
fluorescence, reflecting wide variations in gene
expression between cells. In the second group, where
the negative feedback loop was in operation, the
variation in fluorescence was three times smaller. The
negative feedback effectively cleaned the output signal
of this system, conferring stability and making it more
suitable for use in a digital circuit.

Using similar methods, other very simple circuits
have been built in E. coli. Gardner et al. constructed
a toggle switch6. A toggle switch can exist in one of
two states (1 or 0), and will only switch between these
states in response to specific stimuli. In the absence
of such stimuli, the state of the switch is maintained.
The system used by Gardner et al consisted of two
repressors, their promoters and inducers. In their
system, they used a temperature sensitive repressor
(cIts) and lacI, which is sensitive to IPTG (isopropyl
bD-thiogalactoside). By varying the positions of these
repressors and their promoters, four different versions
of the network were made. The state of the system
was determined by use of a fluorescent protein

(1=fluorescence, 0=no fluorescence). In all four
versions, the system maintained its state unless
stimulated to change by a change in temperature or
by the binding of IPTG to lacI; in other words, the
system was behaving like a toggle switch.

Elowitz and Leibler made the first attempt at
constructing a ring oscillator in vivo7. A ring oscillator
consists of an odd number of inverters linked in series
with the output of the last inverter fed into the input of
the first one. Oscillators are very useful for any function
that involves timing; they are used in digital clocks and
watches, for example. Elowitz and Leibler’s system
consisted of three biochemical inverters linked in
series. CI, LacI and TetR and their corresponding
promoters were used. The state of the system was
reported by using a fluorescent protein. Half of the
E.coli cells transformed demonstrated oscillatory
behavior, but the amplitude and frequency of the
oscillations varied considerably between cells. For a
ring oscillator to be of any practical use, it must oscillate
at constant amplitude and frequency. Various studies
are currently underway to find ways of achieving this
in vivo.

Designing In-Vivo Circuits

Two general approaches have been employed in
designing in vivo circuits. The first is ‘rational design’
which uses computer simulations to model the gene
networks. The results of the simulations are used to
identify modifications that can subsequently be made

Figure 3.  Repressors and inducers working together as an IMPLIES gate.
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to the in vivo system to produce the desired
behavior8. This method was successfully used to
improve the repressor and oscillator circuits discussed
above.

The second approach that is employed is called
‘directed evolution’. In this approach, a large number
of random mutations are introduced into the DNA
sequences of a gene network. Cells are transformed
with plasmids containing the mutated gene networks.
The cells are observed and those which exhibit the
desired behavior are selected. DNA sequencing is then
used to identify the mutations that made these cells
exhibit the behavior8. As a proof of concept,
Yokobayashi et al. used this approach to try and
reproduce the toggle switch discussed above9. Starting
with a non-functional system, random mutations were
introduced into the cI gene and its repressor binding
site. 50% of the colonies developed the desired
behavior, and the various mutations that produced it
were identified using DNA sequencing; while some of
these would have been overlooked had they used the
rational design methodology. The introduction of these
mutations into the system resulted in a sharper
response than was seen in the original experiment.

Directed evolution relies on the assumption that
random mutations of limited regions will make some
cells exhibit the desired behavior. As the size and
complexity of the gene network grows, this will
become less likely, and the number and combinations
of mutations involved will become too big to handle.
It is then necessary to use the rational design model to
select the best regions to mutate. Directed evolution
can then be used to obtain cells which exhibit the
desired behavior. The combination of the two
approaches is more likely to be successful at designing
future circuits.

It is clear that, even in these small circuits, there
are substantial problems in obtaining consistent results.
As reviewed by Abelson et al, there are many practical
difficulties to overcome10. We do not have a complete
list of all repressors and the sites to which they bind.
We do not have accurate or complete data on the
kinetic constants involved. We still do not understand
the metabolism or reproduction of cells well enough
to accurately predict the effects of any interference
with them. Simulator results employed in the rational
design approach frequently disagree with what is

actually observed because the simulator does not have
complete and accurate information about the system
being modelled8. Beyond this, the fact remains that
this is a stochastic system and there will always be
variation in behavior between cells.

There are other biochemical processes in the cell
besides those that are used in the circuit. Not only
does this produce background noise, making it difficult
to discern the signal, but it can also directly interfere
with the circuit. There are likely to be other gene
regulatory processes besides those that are
manipulated to create the circuits, and there are likely
to be interactions between the proteins outside of the
gene regulatory system10. For genetic logic to work,
each signal needs to be represented by a different
protein and each gate by a different gene or set of
genes. As the number of genes and proteins involved
grows, so does the potential for outside interactions.

Genetic logic is slow, having a maximum switching
speed of 10-2. By comparison, electronic logic has a
minimum switching speed of 106 . It is therefore
unlikely that in vivo circuits using genetic logic will be
able to solve computationally difficult problems by
themselves11.

Communication Between Cells

The key to building a computer based on cells may
lie in controlling the behavior of groups of cells. The
first step toward achieving this is to enable the cells to
communicate with each other. It is clear that this
happens in eukaryotic systems, but it is also known to
occur in bacteria12. An example of this is quorum
sensing.

In quorum sensing, a species-specific chemical
signal is produced which diffuses across the population
and enables each bacterium to sense the population
density13. The marine prokaryote Vibrio fischeri has
a quorum sensing system that produces
bioluminescence14. Each bacterium secretes an
autoinducer which diffuses into the surrounding media
and permeates neighbouring cells. As the cells grow,
the concentration of autoinducer inside and outside
the cells increases. Once the concentration of
autoinducer reaches a threshold level, it initiates a series
of intracellular events which activate transcription of
the luciferase and luxI genes. LuxI increases the



concentration of autoinducer, whilst luciferase activity
produces the bioluminescence15.

The quorum sensing genetic constructs from Vibrio
fischeri were successfully transferred to E.coli to
enable the bacteria to communicate3. The genetic
circuits used were constructed so that some cells
produced the autoinducer (sender cells) whilst others
detected the presence of the autoinducer and
expressed a fluorescent protein (GFP) in response
(receiver cells). A droplet of sender cells was placed
close to receiver colonies on an agar plate, and time-
lapse green fluorescent photographs were taken. As
the autoinducer diffused across the plate, the receiver
colonies fluoresced. Weiss et al. have subsequently
successfully built further complexities into the system
to allow it to respond to two chemicals and to detect
concentration ranges3.

Cellular Computing

As discussed in the ‘Some Basic Facts about
Computer Science’ sidebar, conventional computers
are based on Von Neumann architecture, in which one
complex processor, the CPU, carries out a task in a
sequential manner (one thing at a time). However, there
are advantages to having a parallel system. The idea
of parallel computers is to have many processors
instead of one; ‘many hands make light work’ as the
proverb goes, so parallel computing has the potential
to be faster and more efficient.

There is an emerging computational philosophy
called cellular computing*, which takes parallel
computing to the next level, and which could be
applied to bacteria16. Sipper defines three principles
of cellular computing:

1. Simplicity: The processor in cellular
computing is defined as a cell. It can do very
little on its own. The system performs complex
tasks through the combined function and
cooperation of many cells.

2. Vast Parallelism: Most parallel
computers have at most 40-60 processors.
‘Massively parallel’ computers, as they are
called, contain thousands or tens of thousands
of processors. In this system, the parallelism is
exponential, with 10X processors.

3. Locality: Each cell communicates only
with other cells that are close by, and each
communication contains only a small amount of
information. There is no single cell that has an
overview of the computer system, and no single
cell that controls the entire system i.e. there is
no CPU or central processing unit.

Systems which use bacteria as substrates for
engineering meet these three criteria for a cellular
computing system. The major drawback once again
is speed. The system developed by Weiss et al. relies
on the diffusion of a chemical signal8, so the
computational speed of a cellular computer based on
this system is limited by the rate of diffusion, which is
slow. There are many other applications for Cellular
Computing such as DNA computing, artificial
automata and the search for a ‘Quantum Computer’,
which are not discussed here.

Amorphous Computing

Assuming it is possible to build a cellular computer
comprised of living cells, there is still the question of
how to program it. Living cells are not silicon chips;
they are unreliable parts, their interconnections are
unknown, and both their behavior and interconnections
vary with time. Moreover, in order to perform tasks,
they must be made to behave coherently in
prespecified ways. Researchers at the Massachussets
Institute of Technology have called this ‘Amorphous
Computing’17.

Abelson and Forbes propose that the system could
first be programmed to perform a self-diagnostic
operation in which it discovers which elements are
operational and what the interconnections are17. The
proof of concept for this approach is the Teramac
machine. This is a massively parallel computer
constructed from defective chips at Hewlett Packard

*The use of the term ‘Cellular Computing’ in the
literature is confusing. Sipper (1999) uses it to describe a
computing philosophy based on simplicity, vast parallelism
and locality. Abelson et al (2000) use it to describe the
efforts to design in vivo circuits. This article uses the term
according to Sipper’s definition.
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(HP) laboratories. Teramac is able to perform a self-
diagnostic to find the functional components and their
interconnections, and achieves greater processing
speeds than HP’s best workstations despite containing
more than 200,000 defects18.

Another approach is to find fundamentally new
ways of programming that do not require precise
control over the computer hardware. In the natural
world, there are many metaphors for this kind of
programming. For example, a swarm of bees
cooperate to form a collective hive. During
morphogenetic processes, cells cooperate to form
complex tissues and organs. Let us assume that the
starting point is a cellular computer based on bacteria,
which communicate by means of chemical signals.
Abelson et al. describe a system by which this
computer could be programmed10. A central sender
bacteria sends a signal to each of its neighbours, which
then send signals to their neighbours, and so on. This
sets up a diffusion wave which spreads throughout
the system. Complexities can be built into the system;
for example if there are two waves from points A and
B, bacteria could be programmed to relay the wave
from A only if they have not seen the wave from B.
Adding complexities like these will cause the waves

to spread in particular directions, and to start
generating patterns.

Coore developed the growing point language
(GPL) based on this premise 10. This language enables
the formation of complex prespecified patterns by
manipulating the diffusion waves. The language treats
all operations as ‘growing points’, which is taken from
the botanical metaphor of a branch growing from the
stem of a plant, and then sprouting leaves and flowers.
In this case, a program written in GPL is able to
successfully direct the waves to grow, branch and
sprout into a meaningful shape and form such as the
interconnected topology of an electronic circuit.
Another metaphor from biology that has been used in
this way is embryological development. Nagpal
developed a computer model based on the mechanics
of epithelial folding19. The program generates cyst-
like structures with different shapes but the same
volume. A shape program could be written to instruct
these ‘cysts’ to assume useful shapes. There are
countless other biological metaphors that could be
used to inspire programmers in this way.

Figure 4.  Logic gates and corresponding gene expressions.
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Conclusion

The technology required to support a bacterial
cellular computer is at a primitive stage of development.
The stochastic nature of the system is problematic for
circuit design in individual cells. However, at the
programming level, this characteristic might be the key
to designing a robust system. It is not clear what a
bacterial cellular computer programmed using
amorphous computing would be able to
do. The processing speed of the hardware is likely to
be slow, but amorphous computing may yield
software that can overcome this drawback.

Bacterial cellular computers are unlikely to replace
conventional computers in the foreseeable future. It is
more likely that there will be specific niches in which
this technology can excel, such as the design of
programmable cells that can deliver drug doses directly
to the site of action or act as vectors for gene therapy.
On the other hand, conventional computing has already
come much further than its founders predicted.
Perhaps the search for a ‘living computer’ has some
surprises in store for us too.

Some Basic Facts about Computer Science

During the 1800’s, George Boole formulated a
mathematical form of logic called Boolean Logic. In
mathematical logic, the ambiguity of natural language
is overcome by using an artificial language or set of
symbols. Boolean Logic, as applied to computer
science, is two state logic where 1 = true (signal) and
0 = false (no signal). Computer hardware can simply
be regarded as a physical manifestation of Boolean
Logic, with billions of 1’s and 0’s flowing through it to
carry out the computer’s functions.

Computer architecture describes what the
components of a computer are and how they are
connected. In the 1900’s, John von Neumann divided
computer architecture into three parts: the central
processing unit (CPU), memory and a connecting
device (data bus). The CPU is the controller of all
other components. This layout is called Von Neumann
architecture. Alan Turing then invented the Universal
Turing Machine, which is a way of determining what
can and cannot be computed using Von Neumann

architecture. Between them, Turing and von Neumann
laid down the foundations upon which all modern
computers are based. Data stored by computers
based on the above principles is most commonly
binary data represented by electrical or
electromagnetic signals (1=signal, 0=no signal). Such
a system is digital, because the data is discrete.  By
contrast, systems in which the data is continuous are
called analogue. Digital data is processed by means
of logic gates. A logic gate receives fixed inputs (1 or
0) and gives predictable outputs. Tables showing the
output given for particular inputs are called truth tables.
Logic gates can be linked together to perform
meaningful functions. They form the basis of all
computer components.  Examples of common gates
and their truth tables are shown above.

Systems can be described as stochastic or
deterministic. The behavior of a stochastic system is
governed by probability and cannot be exactly
predicted, whereas the behavior of a deterministic
system can be predicted exactly. Conventional
computers rely on the presence of a deterministic
system.

If the computer hardware is to perform meaningful
tasks, it needs to be given instructions by means of a
computer program. Computer programs are sets of
instructions written in programming languages which
can be understood by the computer. After the
instructions have been recognized, they are translated
into machine code by compilers. The machine code
then directs the hardware to carry out the instructions.

Gene Regulation in Prokaryotes

Gene expression refers to the production of a
biologically active protein by a gene. Many biological
functions require the coordination of several proteins,
and the genes which encode these proteins are
grouped together in clusters called operons. The
initiation of gene transcription is controlled by two
sequences located upstream of the gene. These are
called promoters. RNA polymerase recognises these
promoters as a signal to start transcription. This
initiating step is the main site at which the rate of gene
transcription is controlled.

The ability of RNA polymerase to recognize and
bind promoters can be altered by accessory proteins.
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Proteins that enhance or are required for this
recognition of promoters are called activators, and
proteins that inhibit it are called repressors. In many
cases, these proteins exert their affects by regulating
the accessibility of the promoter regions. They do this
by binding to sequences adjacent to the promoters
called operators. The activator and repressor can
themselves be modulated by other proteins. An inducer
is a protein that binds and inactivates the repressor.
However, in some cases it binds and activates the
activator. The precise mechanism of gene regulation
varies between genes.
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