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Engineering the Provitamin A
(b-Carotene) Biosynthetic

Pathway into (Carotenoid-Free)
Rice Endosperm
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Paola Lucca,1 Peter Beyer,2§ Ingo Potrykus1§

Rice (Oryza sativa), a major staple food, is usually milled to remove the oil-rich
aleurone layer that turns rancid upon storage, especially in tropical areas. The
remaining edible part of rice grains, the endosperm, lacks several essential nutrients,
such as provitamin A. Thus, predominant rice consumption promotes vitamin A
deficiency, a serious public health problem in at least 26 countries, including highly
populated areas of Asia, Africa, and Latin America. Recombinant DNA technology
was used to improve its nutritional value in this respect. A combination of trans-
genes enabled biosynthesis of provitamin A in the endosperm.

Vitamin A deficiency causes symptoms rang-
ing from night blindness to those of xeroph-
thalmia and keratomalacia, leading to total
blindness. In Southeast Asia, it is estimated
that a quarter of a million children go blind
each year because of this nutritional deficien-
cy (1). Furthermore, vitamin A deficiency
exacerbates afflictions such as diarrhea, re-
spiratory diseases, and childhood diseases
such as measles (2, 3). It is estimated that 124
million children worldwide are deficient in
vitamin A (4) and that improved nutrition
could prevent 1 million to 2 million deaths
annually among children (3). Oral delivery of
vitamin A is problematic (5, 6), mainly due
to the lack of infrastructure, so alternatives
are urgently required. Success might be
found in supplementation of a major staple
food, rice, with provitamin A. Because no
rice cultivars produce this provitamin in the
endosperm, recombinant technologies rather

than conventional breeding are required.
Immature rice endosperm is capable of syn-

thesizing the early intermediate geranylgeranyl
diphosphate, which can be used to produce the
uncolored carotene phytoene by expressing the
enzyme phytoene synthase in rice endosperm
(7). The synthesis of b-carotene requires the
complementation with three additional plant en-
zymes: phytoene desaturase and z-carotene de-
saturase, each catalyzing the introduction of
two double bonds, and lycopene b-cyclase, en-
coded by the lcy gene. To reduce the transfor-
mation effort, a bacterial carotene desaturase,
capable of introducing all four double bonds
required, can be used.

We used Agrobacterium-mediated transfor-
mation to introduce the entire b-carotene bio-
synthetic pathway into rice endosperm in a
single transformation effort with three vectors
(Fig. 1) (8). The vector pB19hpc combines the
sequences for a plant phytoene synthase ( psy)
originating from daffodil (9) (Narcissus pseud-
onarcissus; GenBank accession number
X78814) with the sequence coding for a bacte-
rial phytoene desaturase (crtI ) originating from
Erwinia uredovora (GenBank accession num-
ber D90087) placed under control of the en-
dosperm-specific glutelin (Gt1) and the consti-
tutive CaMV (cauliflower mosaic virus) 35S
promoter, respectively. The phytoene synthase
cDNA contained a 59-sequence coding for a
functional transit peptide (10), and the crtI gene
contained the transit peptide (tp) sequence of
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the pea Rubisco small subunit (11). This plas-
mid should direct the formation of lycopene in
the endosperm plastids, the site of geranylgera-
nyl-diphosphate formation.

To complete the b-carotene biosynthetic
pathway, we co-transformed with vectors
pZPsC and pZLcyH. Vector pZPsC carries psy
and crtI, as in plasmid pB19hpc, but lacks the
selectable marker aphIV expression cassette.
Vector pZLcyH provides lycopene b-cyclase
from Narcissus pseudonarcissus (12) (Gen-
Bank accession number X98796) controlled
by rice glutelin promoter and the aphIV gene
controlled by the CaMV 35S promoter as a
selectable marker. Lycopene b-cyclase car-
ried a functional transit peptide allowing plastid
import (10).

Precultured immature rice embryos (n 5
800) were inoculated with Agrobacterium
LBA4404/pB19hpc. Hygromycin-resistant plants
(n 5 50) were analyzed for the presence of
psy and crtI genes (Fig. 2). Meganuclease
I–Sce I digestion released the ;10-kb inser-
tion containing the aphIV, psy, and crtI ex-
pression cassettes. Kpn I was used to estimate
the insertion copy number. All samples ana-
lyzed carried the transgenes and revealed
mostly single insertions.

Immature rice embryos (n 5 500) were

inoculated with a mixture of Agrobacterium
LBA4404/pZPsC and LBA4404/pZLcyH. Co-
transformed plants were identified by South-
ern hybridization, and the presence of pZPsC
was analyzed by restriction digestion. Pres-
ence of the pZLcyH expression cassettes was
determined by probing I-Sce I–and Spe I–di-
gested genomic DNA with internal lcy frag-
ments. Of 60 randomly selected regenerated
lines, all were positive for lcy and 12 con-
tained pZPsC as shown by the presence of the
expected fragments: 6.6 kb for the I-Sce
I–excised psy and crtI expression cassettes
from pZPsC and 9.5 kb for the lcy and aphIV
genes from pZCycH (Fig. 1). One to three
transgene copies were found in co-trans-
formed plants. Ten plants harboring all four
introduced genes were transferred into the
greenhouse for setting seeds. All transformed
plants described here showed a normal veg-
etative phenotype and were fertile.

Mature seeds from T0 transgenic lines and
from control plants were air dried, dehusked,
and, in order to isolate the endosperm, polished
with emery paper. In most cases, the trans-
formed endosperms were yellow, indicating ca-
rotenoid formation. The pB19hpc single trans-
formants (Fig. 2A) showed a 3 :1 (colored/
noncolored) segregation pattern, whereas the

pZPsC/pZLcyH co-transformants (Fig. 2B)
showed variable segregation. The pB19hpc
single transformants, engineered to synthe-
size only lycopene (red), were similar in color
to the pZPsC/pZLcyH co-transformants engi-
neered for b-carotene (yellow) synthesis.

Seeds from individual lines (1 g for each
line) were analyzed for carotenoids by photo-
metric and by high-performance liquid chroma-
tography (HPLC) analyses (13). The carote-
noids found in the pB19hpc single transfor-
mants accounted for the color; none of these
lines accumulated detectable amounts of lyco-
pene. Instead, b-carotene, and to some extent
lutein and zeaxanthin, were formed (Fig. 3).
Thus, the lycopene a(ε)- and b-cyclases and the
hydroxylase are either constitutively expressed
in normal rice endosperm or induced upon ly-
copene formation.

The pZPsC/pZLcyH co-transformants had a
more variable carotenoid pattern ranging from
phenotypes similar to those from single trans-
formations to others that contain b-carotene as
almost the only carotenoid. Line z11b is such
an example (Fig. 3C and Fig. 2B, panel 2) with
1.6 mg/g carotenoid in the endosperm. Howev-
er, reliable quantitations must await homozy-
gous lines with uniformly colored grains. Con-
sidering that extracts from the sum of (colored/

Fig. 1. Structures of the T-DNA region of pB19hpc used in single transformations, and of
pZPsC and pZLcyH used in co-transformations. Representative Southern blots of indepen-
dent transgenic T0-plants are given below the respective Agrobacterium vectors. LB, left
border; RB, right border; “!”, polyadenylation signals; p, promoters; psy, phytoene synthase;
crtI, bacterial phytoene desaturase; lcy, lycopene b-cyclase; tp, transit peptide.
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noncolored) segregating grains were analyzed,
the goal of providing at least 2 mg/g provitamin
A in homozygous lines (corresponding to 100
mg retinol equivalents at a daily intake of 300 g
of rice per day), seems to be realistic (7). It is
not yet clear whether lines producing provita-
min A (b-carotene) or lines possessing addi-
tionally zeaxanthin and lutein would be more
nutritious, because the latter have been impli-
cated in the maintenance of a healthy macula
within the retina (14).
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Fig. 2. Phenotypes of transgenic rice seeds. Bar, 1
cm. (A) Panel 1, untransformed control; panels 2
through 4, pB19hpc single transformants lines
h11a (panel 2), h15b (panel 3), h6 (panel 4). (B)
pZPsC/pZLcyH co-transformants lines z5 (panel
1), z11b (panel 2), z4a (panel 3), z18 (panel 4).

Fig. 3. The carotenoid extracts from seeds (1 g
for each line) were subjected quantitatively to
HPLC analysis. (A) Control seeds, (B) line h2b
(single transformant), (C) line z11b (co-trans-
formant), and (D) z4b (co-transformant). The
site of lycopene elution in the chromatogram is
indicated by an arrow.
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