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Much progress has been made during the past year in the 

molecular dissection of the circadian clock. Recently identified 

circadian genes in mouse, Drosophila, and cyanobacteria 

demonstrate the universal nature of negative feedback 

regulation as a circadian mechanism; furthermore, the mouse 

and Drosophila genes are structurally and functionally 

conserved. In addition, the discovery of brain-independent 

clocks promises to revolutionize the study of circadian biology. 
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Abbreviations 

bHLH basic helix-loop-helix 

CV Cfyptochrome 

CT circadian time 

DBP D-binding protein 

dbt double-time 

fw frequency 
PAS PER ARNT SIM 

per period 
SCN suprachiasmatic nuclei 

tim timeless 

Introduction 
A major goal in the study of circadian biology is to cluci- 

date the molecular mechanisms governing the circadian 

clock. To date. genetic approaches have yielded the most 

success in this cndca\ or: the prriod (JW-) and fimfk~s (fim) 

gents in Dr0so~/ril0. the .fi-~~utw? (frq) gene in ~Veurvs;nortl, 

and the C/d gene in the mouse were each cloned follo\4 - 

in:: mutagenesis screens for altered circadian phenotypes 

(‘lible 1) 1 l-31. Stuciies in L)ro.sop~i/ir on circadian mutants 

that either shorten (/d), lengthen (flpr’,) or abolish (,Lw”~, 

tir#I) rhythms in behavior and eclosion have provided :I 

compelling molecular model of rhythmicity in that animal 

(rcvicwxl in detail in [3] and [A] but only briefly below, 3s 

space restrictions pre\cnt extensive description and rcfer- 

encing). ‘I’he /WI‘ :lnd fitt/ gents oscillate in mRNA 

expression, protein abundance, and protein localization 

(S-IO]. ‘1%~ periods of thcsc oscillations depend upon the 

PBI’ and fim alleles (i.c. the molecular period matches the 

I>ch;l\~ioral period in a mutant fir/‘ or fitrr genetic 

txlckpw~nd). In addition, PER overexpression from ;~n 

inducible promoter inhibits the endogenous pa mRNA 

rhythm [ll]. These otxer\2tions indictite that the prr nnd 

ti/w gene products regulate their own transcription. .A -6 

hour delay between transcription and translation occurs in 

both g:cnc products [b-10] and, furthermore, nuclear 

Iocalizition of PICK :uid of ‘I’lhl is hlockcd in fi/uol kind 

/w/01 flies. rcspcctivelY [X.9]. PER physically interacts 

\vith ‘I’lhI \.i;i its i)ZS domain [l] both i/l .c,ifm [lZ\ and in 

cell cultlirc 11.31. Finally, light dcgradcs the ‘I’IiLl protein, 

which provides ;I mcchanicm for photic entrainment of 

the PI-R-‘I’IRI molecular cycle [X-lO,ll]. Integration of 

these 0l)scrwtions results in the follok\Ang model 

(b‘igurc 1 ): the pr and /i/r/ gciics ;irc transcribed diiring 

the subjccti\c day (peak kit circadian time [(:‘I‘] 12-14) 
(Figure la): PER and ‘I’Ihl wcumulatc slowly- until a 

threshold Icvcl of ‘1‘11\1 is I-cached and stabilizcc PER 

(12igurc 1 b,c). I’l<Ii-‘I’I\I dimcrs enter the nucleus 

around (:‘I’ 21 and inhibit transcription of their o\vn genes 

(t.‘igurc 1d.c). hut as the proteins turn over. inhibition is 

released and transcl-iption begin:, again in the suhjccti\e 

morning (I:igurc If). I,ight-induced dcgradvtion of 7‘Ihl 

dilriii:: the carlv subjecti\x night or the late siit)jecti\c 

night decreases PER stability, lvhich results in ;i phase 

dcla) or a pliasc ad\~incc in the cycle, rcapccti\xl~. 

‘Ilie current ,\j’/~1~0.s~w0 model is analogous to that of 

l)ro.sop/lil~/ [15]. Similar to PER and ‘l’lhl, FRQ appears to 

inhibit its own transcription [lb]. In contrast to L)r0so~/Ii/~~, 

howe\ er, peak ,fiq expression occurs during the day ((:‘I’ 

1-6), und light strongly inducts ,fiy transcription [16.17]. 

‘I’hcse differences indicate that \vhile the negative feed- 

back mechanism of circadilln rhythmicity :q>pe:ux to bc 

conserved. the required genes and regulatory path\wyi 

may differ from species to species. 

III tllc lwt year, rcmdablc progress has ken made in 

discerning the elements of the clock mechanism. 

Identification of positive elements (i.e. fxwrs N hich acti- 

\ xc rrlther than inhibit) allows the formal testing of the 

feedback loop model, and other new circadian genes pro- 

vide dditional information about the regulation of 

rhythmicity (T:,lhle 1). ‘I’he discovery and functional analy- 

scs of these gents, comparison of circadian organization 

among di\wgcnt species, and new approaches in circadian 

biology are addressed in this re\icw. 

Closing in on closing the loop: new clock 
component genes and new aspects of 
circadian regulation 
The mammalian clock 
iLlolecular analysis of mammalian clock components began 

in earnest ~\ith the identification of the mouse C/0/16 gene 

[ lX”,lY]. C’hfi \cas cloned by rescue of both the period 

length and period stability mutant phenotypes using ;1 C/O&- 

containing bacterial :irtiticial chromosome transgenc [ 1 So*]. 

Sequence analysis indicated that C/0& encodes a putati\x 

t,IHI,II-PAS domain transcription fdctor [19”]. ‘I’his finding 

r;lised the intriguing possibility that ~:I,O<X could act 3s ;I 

positiw element within a transcription-tralislation negati\:e 
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Table 1 

Circadian clock gene expression, function and effects I*. 

Gene Circadian phenotype Circadian 

expressiont 

Mammals 

Clock 

Per1 

Per2 

28 hour period, arrhythmicity 

n.d. 

n.d. 

No 

Yes 

Yes 

Per3 

Bmall 

Drosophila 

per 

tim 

dClock (Jrk) 

cycle (dbmall) 

double-time 

Neurospora 

frq 

white collar- 7 

white collar-2 

n.d. 

n.d. 

Many alleles, including 16 hour period, 

19 hour period, 28 hour period, arrhythmicity 

Arrhythmicity 

Arrhythmicity; low per, tim expression 

Arrhythmicity; low per, tim expression 

18 hour period, 27 hour period, arrhythmicity 

Many alleles, including short period, 

long period, arrhythmicity 

Arrhythmicity, low frq expression 

Arrhythmicity, low frq expression 

Yes 

No 

Yes 

Yes 

Yes 

(light-dark cycle) 

n.d. 

No 

Yes 

n.d. 

n.d. 

Synechococcus 

kaiA BC Many alleles, including short period, 

long period, arrhythmicity 

Yes 

Acute light 

response 

Reference 

n.d.: 

?mRNA 

?mRNA 

No 
n.d 

No 

Protein 

degradation 

n.d. 

n.d. 

No 

?mRNA 

n.d.9 

n.d.* 

n.d 

[18”,19”,21”] 

[21”,22”,26’] 

[23’1 
[24’,25”] 

[25”] 

[28’,29”,30] 

[31 

[31 

[36”,38”] 

[37”,38”1 

[40”,41”1 

l631 

*‘Genes’ indicates known DNA and protein sequence. Eircadian rhythm of mRNA and/or protein expression. :n.d., not determined. BMutations 

originally identified as a blue light blind phenotype. 

f’eedback loop and co~dd be inhibited by a mammalian ver- 

sion of PER via its PAS domain. Furthermore, the GM 

mutation, an A+T transversion in the splice donor site of 

exon 19, results in a 51 amino acid deletion within the pro- 

posed activation domain and is consistent with the 

antimorphic nature of the (:lo& mutant phenotype [19”.20]. 

Following the cloning of C/o&, the identification of per 

orthologs in human and in mouse by several independent 

laboratories underscored the possibility of a D/aq&i/u-like 

feedback loop in mammals. These genes, prefixed human 

(h) or mouse (m) Prr-l [21”,22”], Prr-2 [23’,24’], and f’f& 

[25**], all encode proteins that contain a PAS domain. 

Circadian expression of mPr;rl, mPu-2, and mPuE? in the 

suprachiasmatic nuclei (SCN), the site of the mammalian 

clock. suggests that these genes could be circadian clock 

components [21”,22”.2~‘,2~‘,25”]. Confirmation of these 

genes as circadian components requires functional evi- 

dcnce: either ;I mutation within each gene or altered 

expression of each gene must result in an altered circadian 

phenotype in mice. In the SCN, mPer/ expression peaks at 

Cl 6 whereas mPu-2 peaks at CT 9: mPer3 expression 

reaches its maximum at CT 6 and remains at that level 

until after Cl’ 9. In tissues throughout the body, such as 

retina and skeletal muscle, expression of all mZ’Pr genes is 

delayed -6 hours relative to their phase in the SCN 

[21”,22”.2~~,2-r’,2s l ‘,26*]. Intcrcstingly. ;I light pulse 

administered during the subjective night results in rapid. 

transient induction of mPPr2 expression (maximal induc- 

tion within one hour) and delayed, transient inducrion of 

rnl’er,’ (maximal induction within 1.5 to 2 hours) 

[23’,24*.2.5**,26*]. In contrast, mPd dots not acutcl? 

respond to a light pulse [2.5*‘]. 

Transcriptional activation by bHLI1 factors such as 

CI,OCK require dimerization and binding to a IIN, pro- 

motcr element called the E box (consensus 

.S’-CANNTG3’) [27]. The CLOCK dimerization partner. 

B?Jw/? (for brain and muscle ARX’Flike factor), \vas idcn- 

tified using a two-hybrid screen [28’,29”]: this gene of 

previously unknown function [30] also encodes a b1 ILH- 

PAS protein and is expressed in the SCN [29’*]. 

Interestingly, an R box present in a 69 bp enhancer of the 

DT-O.SO@~U~PJ- promoter is required for 13~7 mRNA cycling, 

which suggests a role for bHLH transcription factors in the 

circadian mechanism [31”]. ITsing a proximal fragment of 

the mPerl promoter which contains three E boxes, 

Gekakis et (11. [29”] find that CI,OCK and B~IXLl hct- 

erodimers bind the mPe/-I promoter and activ;ltc 

transcription. Furthermore, CLOCK-HhlAI> heterodimers 

can activate transcription from the three E boxcs alone. 

whereas mutation of the E boxes abolishes DNA binding 
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Figure 1 

:LOCK EIMALI 

/ 

Current molecular model of rhythm generation in Drosophila. The succession of events (a-f) occur over the course of -24 hours. 

(a) CLOCK-BMAL heterodimers bind the per and tim promoters and activate mRNA expression from each locus; peak expression occurs -CT 12. 
CLOCK-BMAL may also activate transcription other circadian-regulated genes (not shown). (b) per and tim mRNA are transported to the 

cytoplasm and translated into PER and TIM protein, respectively. (c) Regulation of protein levels occurs by two mechanisms: DBT protein 

phosphorylates and destabilizes PER, and light destroys TIM. Light during the early subjective night can phase-delay the clock. Small ‘blobs’ 

indicate degraded proteins. (d) PER and TIM levels slowly accumulate during the early subjective night; TIM stabilizes PER and promotes nuclear 

transport. Peak PER and TIM levels in the cytoplasm occur -CT 19. (e) PER and TIM dimers enter the nucleus and inhibit CLOCK-BMAL- 

activated transcription; peak nuclear PER/TIM levels occur -CT 21. (f) Protein turnover (combined with the lack of new PER and TIM synthesis) 

leads to derepression of per and tim mRNA expression; the cycle begins again (a) -CT 2. Light during the late subjective night can phase-advance 

the clock. 

and tmnscriptional activation [ZX’,W’]. Finally, the exon- 

1%deleted mutant form of CLOCK failed to activate 

transcription, a result fully consistent with the antimorphic 

Cl& mutant allele [29”]. These results identify CLOCK 

and BhlAL as positive elcmcnts in the transcription-trans- 

lation loop: whether mPER1 inhibits CI,OCK/BRIAL 

activity awaits additional experimentation. 

1;urthei delineation of circadian output and input pathways 

in mammals has also been achieved recently. Expression of 

the basic leucine zipper transcription factor albumin site 

D-binding protein (DBP) oscillates under constant condi- 

tions in several tissues, including the SCN and the liver; 

interestingly, the phase of the rhythm in the SCN is 

advanced four hours relative to that in peripheral tissues 

[32’]. Animals homozygous for a targeted DBP-null muta- 

tion are less active than wild-type littermates but still display 

free-running rhythms, although period is -30 minutes short- 

er than wild-type [32’]. In addition, the G’&J gene does not 

require the DBP protein for its own expression [32’]. This 
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information suggests that dt?p is an outpt,t  gene rather than a 
part of thc central oscillator mechanism. At the inpt,t level, 
targeted disruption of the melatonin la  (Mella) receptor 
showed that this receptor mediates the melatonin-induced 
inhibition of SCN neural activit% but that the phase-shifting 
effects of melatonin may be mediated by the Melll  , receptor 
or by an unidentified receptor [33]. In addition, a putative 
input gcne was identified in a cDNA subtraction screen for 
l ight-induced gene expression in the SCN; this gcne, the 
zinc-finger transcription factor e gr-3, is expressed in the ven- 
tral SCN and is gated by the circadian clock [34]. Finall> the 
mammal ian  blue- l ight  photoreceptors  c ryptochrome l 
((,';3,1) and cup tochrome  2 (6'0'2) are expressed in the retina 
(CO, I and (,'0,2) and the SCN (CO,1 only), thereby providing 
a new class of photopigments  as candidates for the photic 
entraimnent  pathway in mammals [35°]. 

The Drosophila clock 

Genet ic  and molccular approaches in Dros@/;i/a have lcd to 
recent discoveries that maintain this species as the best 
understood in the circadian field. Mutagenesis  screening 
rcvealed the scmidominant  mutation Jd" and the gene 
dose-dependen t  mutation O,c/e to'c), both of which either 
alter or abolish rhythms in behavior, per expression, and tim 
expression [36°' ,37"].  (](mcomitantly, dc/oc;~ was isolated in 
a low-stringency screen with mClod', and a Drosopt;ila- 
exprcssed sequence ta R clone with homology to hl~ma/l 
was identif ied [38"]:  dc/ocx;- and dhmal were found to map 
to the . ld '  and O'c loci, respectively. Darlington eta/ .  [38 °°] 
have shown that d ( : L O C K  (presumably with dBMAI~) 
binds E box sequences to activate transcription of per and 
tim. ITurthcrmnre, co-exprcssion of PER and T I M  inhibits 
transcriptional actiwltion by d C L O C K  [38°°]. "Fhesc results 
thus appear to closc the circadian loop: the positive ele- 
ments d(]I ,O(]K and dBMAI,  activate transcription of the 
negative e lements  per  and t/m, the products of which cven- 
tually inhibit  their own transcription via interaction ~xith 
d ( ] I ,O(3K-dBMAI ,  (Figure  1). T h e  precise molecular  
interactions that mediate  this inhibition are unknown; how- 
ever, thc action of P E R - T I M  on d ( ] L O C K - d B M A L  is 
rclativcly direct, as the E box c lement  is necessary and suf- 
ficicnt for activation and inhibition of transcription [38"].  

Regulation of the Drosop/;ila circadian loop appears to 
occur at both the post-transcriptional and the post-transla- 
tional levcls. Using nuclear run-on exper iments ,  So and 
Rosbash [39 °] have demonst ra tcd  that p o ' a n d  tim arc tran- 
scribed at high levcls several hours before an RNasc 
protection assay can de tec t  their  m R N A  specics. In addi- 
tion, no rhythm in transcription rate was de tec ted  from a 
promoterless per gene that weakly restores rhythms of per 
m R N A  accumulation to pc~ ) mutants. "['hcsc rest, Its indi- 
cate that a post-transcriptional mechanism contr ibutes  to 
the observed cycle in per and tim m R N A  expression [39°]. 
An important  post-translational rcgulatnry mechanism was 
also discovered recently. T h e  mutation double-time (dht) 
ci ther  shortens (dbt s) or lengthens (dbt I,) period, and a P 
c lement - induced  null or strongly hypomorphic  mutation 

(dh; 4') results in pupal lethali ty [40°']. Remarkably, thc dht 
gene encodes a kinase with extensivc honlol(~gy to human 
casein kinase I~ [41"°]. dhl t' homozygous mutant  embryos 
express high levcls of stable, unphosphoryla tcd PEP, pro- 
tein independen t ly  of circadian t imc whereas embryonic  
t/m mRNA and protein rhythms arc abolished [40",42"1. 
T h e s e  findings support  a model  in which I ) B T  phospho- 
rylates and destabil izes PER, thereby contr ibut ing to the 
translational delay of PER accunlulation that is required 
for rhythmici ty [40",41 °'] (t : igure 1). Finally, a post-trans- 
lational modification other than phosphorylat ion ~xithin 
PER amino acids 637 and 848 appcars to regulate cyclical 
PER degradation [43]. 

At the level of circadian output,  analysis of the /ad" genc 
confirmed that it is under circadian clock control and thcrc- 
fore on the output  pathway [44]. T h e  /a/~' gcnc product 
bchaves like a reprcssor of cclosion, as thc lad" mutant  
allele results in early eclosion whereas additional copies of 
wild-type/ar~" delay eclosion [45]. Despi tc  the absence of a 
l ad '  mRNA rhythm, I ,ARK protein oscillates in abundance 
(peak and trough levels at C T  8 and (7I" 2(), rcspcctively) in 
thc presencc of a functional per gcnc [44]. Intcrcstingly, 
/ad" is exprcsscd both in lateral neurons, the proposcd site 
of the Drosop/;i/a master clock, as well as in eclosion-rcgu- 
lating cells in the ventral nervous system [44]. Thcsc  
rcsults suggest a specific output  pathway for eclosion that is 
controlled by the central circadian oscillator. 

The Neurospora clock 
(2ontinued analysis of the ~\.}'urospora./}¥ gcnc in the past year 
has rcsulted in the identification of novel regulatory mecha- 
nisms. As in Dro.rop/;i/a, post-translational regulation plays a 
rolc in the :\'?uro.~7?o;~/ circadian clock: ./~¥ mRNA contains 
alternative translation initiation sites, the choice of which is 
mediated b \  environmental  tempcrature [4~3°',47"]. At 
moderate tcmperatures (25°C), t~vo forms arc cxprcssed, and 
each can support rhythmicity; however, at high tcmpcraturcs 
(30°C) the short form of FRQ (FRQl°(>';s% is unablc to 
maintain rhythmicity, whereas at low temperaturcs (18°(~) 
the full-length form cannot drive rhythnls [47"]. In addition, 
tempera ture-sh i f t ing  exper iments  in iX>uro.spoJzl have 
demonstrated that a shift from low tcmperaturc (21 '(:) to 
high temperaturc (28°C) strongly rcscts the clock to (','1' 0. 
whereas the oppositc shift resets the clock to ~(71" 12 I48"]. 
Finalh:. FRQ protein was shown to translocate to the nucle- 
us and rcpress./~¥ mRNA cxpression within 4 hours of the./)¥ 
mRNA peak, ~xith rccmery from this repression taking thc 
remaindcr of the circadian day I49",501. Thus,  thc details of 
circadian regulation between Xe;;;os/~o;~'; and D;o.rophila con- 
tinue to differ, as translational dela~ of PER and TIM in 
Drosophila versus long recovery period in ,\~';;ro.~)0o;~/arc used 
to maintain a 24-hour pcriod. 

T h e  genes ~e~hite collar-I (~,'c-l) and ~e'hJt~ colla;~2 (~e'c-2), 
which encode zinc-finger proteins, appear  to be in~ o i l ed  in 
circadian clock regulation [51"]. In particular, -~,;:/is neces- 
sary for l ight- induced.l /q cxpression, whereas ~e'~:2 may bc 
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required for circadian ,fiv expression [Sl’]. However, w-2 

and .a~-2 have not been shown to bind thefhq promoter or 

directly activate j-q transcription. Sequence analysis indi- 

cates that FK(Z itself may be a transcription factor, as FRQ 

shares moderate homology with known helix-turn-helix 

transcription factors [.%I; but, again, no functional evidcncc 

in support of this hypothesis is available. 

The cyanobacteria clock 
TIlc most recent circadian model system \vas established 

for cynobactcrium S~~~&XVUUS strain XC 7932, which 

displays circadian rhythms in bioluminescence dcspitc a 

replication time of five to six hours [53’]. llsing gcnctic 

complementation. a three-gene locus named kni;lHC’ was 

shown to drive all circadian rhythms in this organism 

[S-l”]. ‘I’hcsc genes share no homology \jith any known 

gcncs. ‘I’hc KaiC product represses acti\.ity of the cluster, 

and overexpression of this gcnc can rcsct the phase of the 

clock. KaiA is required to drive ,&iC: expression. In cffcct, 

a single gcnc cluster in cyanobacteria appears to contain 

both ncgativc and positiw elements for a circadian nega- 

tivc feedback loop. These results demonstrate that 

circadian transcription-translation negative regulatory 

loops are conser\,ed among living systems but the undcrly- 

ing genes differ among phyla. 

Circadian organization: central pacemakers 
and peripheral oscillators 
Conventional wisdom has it that the circadian clock resides 

in the brain in higher animal organisms. The lateral neu- 

rons in Drosophih appear to be important for circadian 

regulation [42’.55], and the suprachiasmatic nuclei are the 

site of the circadian clock in mammals [%I. In the past 

year, holvever. brain-independent circadian oscillators 

(cells capable of self-sustained rhythmic output) ha1.e been 

detected in many peripheral tissues of Iho.wphi/u and with- 

in cultured cell lines in mammals [57,58,59”,60”]. For 

example, the hlalpighian tubules of both decapitated flies 

and non-decapitated control animals displayed identical 

circadian rhythms of PER-lacZ reporter expression and 

nuclear localization [57]. Kay and colleagues have extend- 

ed this observation using a real-time luciferase reporter 

assay to show that the Drosoflhila body as a whole and in 

cultured segments sustains circadian rhythms in pwdriven 

expression [58,SY]. Furthermore, every cultured tissue 

could be entrained by light, indicating that non-neural 

Drnsnphih cells are photoreceptive [SY]. 

Significant new evidence has been found for the existence 

of oscillators throughout the mammalian body. As dis- 

cussed above, rhythms in mPerl, mPer,‘, and mPP/r? can be 

found in many non-neural body tissues [22*~,23~,2S~*]. In 

cell culture. serum stimulation of rat-l fibroblasts and H3S 

hepatoma cells elicits expression of several genes, includ- 

ing rat (r) PerI, rPm2, dhp, and tef (thyroid embryonic 

factor). Remarkably, the expression patterns of these genes 

then oscillate in a circadian manner in the presence of the 

cell cycle inhibitor cytosine P-D arabinofuranoside [60”]. 

‘I’his discovery provides dcfinitivc cvidcncc of brain-indc- 

pendent mammalian clock cells. Furthermore, the relative 

phases of r,%-2 and rPer-2 expression in cell culture match 

those found in the liver in civo [60**]. Finally the rPel-/ and 

rl’w2 gcncs fulfill the criteria for immediate-early genes in 

that serum induction is rapid and independent of new pro- 

tcin synthesis [60”]. This finding is reminiscent of the 

immediate-early expression of cj& andJNt/-H in the SCN 

in response to light and suggests that immcdiatc-early sig- 

naling pathways may play a role in conveying photic 

information to the circadian clock in the XX [61]. 

Comparison of mammalian per. expression data shows that 

the phase of these circadian genes is advanced hctwccn 

three and nine hours (depending on lighting conditions, 

species, and laboratory) in the SCN relative to the rest of 

the body [X*,23*,25** .32’,60”]. suggesting that the SCN 

play a special role within the collection of cellular oscilla- 

tors. Indeed, twenty-five years of physiological evidence 

has dcmonstratcd that the S(:N contains the required 

mammalian pacemaker - the oscillator that dribes period 

and phase in other oscillating cells [62]. The method by 

\vhich the SCX directs circadian rhythmicity throughout 

the body is unknown, hut two gcncrai mechanisms are 

possible: the SCN could dri1.c rhythms in passive, non- 

oscillating cells, or, conversely, the S(:N could coordinate 

cell-autonomous oscillators. The discovery of peripheral 

oscillators strongly supports the latter model. Indeed, the 

physiological organization of circadian rhythmicit); can be 

compared to the hierarchy of cardiac paccmakcrs: in the 

heart. the sinoatrial (SA) node controls the period of car- 

diac rate but, in the absence of the SA node, the 

atrioventricular (A\‘) node regulates rhythm. In the 

absence of either node, indi\-idual cardiac cells are capable 

of rhythmic contraction. This analogy could be applied to 

the circadian system, where some unknow:n factor(s) place 

the SCiY at the top of the circadian hierarchy to coordinate 

cells in the body as a precisely functioning unit. 

Conclusions 
The tremendous progress towards the molecular dissec- 

tion of the circadian clock places the circadian field in an 

exciting era. The identification of new circadian gents 

and the delineation of regulatory mechanisms in diverse 

model organisms have underscored the universal nature of 

the circadian clock yet also suggested phylogenetic differ- 

ences in its assembly. Future studies will undoubtedly 

focus on each gene’s functional role and interactions with 

other circadian genes within the organism. Finally, the 

discovery of brain-independent circadian clocks should 

allow the elucidation of the molecular circadian mecha- 

nism and provide a better understanding of the 

physiological circadian hierarchy. 
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