possible that B61 may also be responsible
in part for the angiogenic activities of
other proinflammatory factors.
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How Baseball Outfielders Determine
Where to Run to Catch Fly Balls

Michael K. McBeath,* Dennis M. Shaffer, Mary K. Kaiser

Current theory proposes that baseball outfielders catch fly balls by selecting a running
path to achieve optical acceleration cancellation of the ball. Yet people appear to lack the
ability. to discriminate accelerations accurately. This study supports the idea that out-
fielders convert the temporal problem to a spatial one by selecting a running path that
maintains a linear optical trajectory (LOT) for the ball. The LOT model is a strategy of
maintaining ‘“‘control’” over the relative direction of optical ball movement in a manner that
is similar to simple predator tracking behavior.

Even recreational baseball outfielders ap-
pear to know virtually from the moment of
bat contact where to run to catch a fly ball.
In this task, the ball’s approach pattern
renders essentially all major spatial location
and depth cues unusable until the final
portion of the trajectory. Cues such as ste-
reo disparity, accommodation, image ex-
pansion rates, and occlusion help to guide
final adjustments in the interception path
(1, 2). During most of the task, the only
usable information appears to be the optical
trajectory of the ball (the changing position
of the ball image relative to the background
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scenery). Conceivably, outfielders could de-
rive the destination from an assumed pro-
jected parabolic trajectory, but research in-
dicates that observers are very poor at using
such a purely computational approach (3).
In addition, factors such as air resistance,
ball spin, and wind can cause trajectories to
deviate from the parabolic ideal (I, 4).
One proposed model is that outfielders
run along a path that simultaneously main-
tains horizontal alignment with the ball and
maintains a constant change in the tangent
of the vertical optical angle of the ball, tan
o (Fig. 1) (5-9). As the ball rises, tan «
increases, but at a rate that is a function of
the running path selected. If the fielder runs
too far in (so that the ball will land behind
him), d(tan a)/dt will increase. If he runs
too far out (so that the ball will land in
front of him), d(tan «)/dt will decrease.
The fielder can arrive at the correct desti-
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